Step 6 Final deduction

Theorem 6.33 allows us to prove the Prime Number Theorem with an error term.

Theorem 6.34 Prime Number Theorem with error term.

$$\psi(x) = x + O\left(x \exp\left(-c \log^{1/10} x\right)\right),$$

for some c > 0.

This will follow from

Lemma 6.35 If

$$\int_{1}^{x} \psi(t) dt = \frac{1}{2}x^{2} + x^{2}\mathcal{E}(x), \qquad (44)$$

then there exist a constants C > 0 such that

$$|\psi(x) - x| \le C\tau(x) \, x,$$

where

$$\tau^{2}(x) = \max_{x/2 \le t \le 3x/2} \left| \mathcal{E}(t) \right|.$$

Proof The important observation is that $\psi(x)$ is an *increasing function of* x. Then, with h = h(x) to be chosen,

$$\frac{1}{h} \int_{x-h}^{x} \psi(t) \, dt \le \psi(x) \le \frac{1}{h} \int_{x}^{x+h} \psi(t) \, dt.$$
(45)

The right hand side here equals

$$\frac{1}{h} \int_{x}^{x+h} \psi(t) \, dt = \frac{1}{h} \left(\int_{1}^{x+h} \psi(t) \, dt - \int_{1}^{x} \psi(t) \, dt \right) \tag{46}$$

The main term which comes from using (44) within (46) equals

$$\frac{1}{h}\left(\frac{(x+h)^2}{2} - \frac{x^2}{2}\right) = x + \frac{h}{2}.$$

The error from using (44) is

$$\begin{aligned} \frac{1}{h} \left| (x+h)^2 \mathcal{E}(x+h) - x^2 \mathcal{E}(x) \right| &\leq \frac{1}{h} \left(\left| (x+h)^2 \mathcal{E}(x+h) \right| + \left| x^2 \mathcal{E}(x) \right| \right) \\ &\leq 2 \frac{(x+h)^2}{h} \max_{x < t < x+h} \left| \mathcal{E}(t) \right|, \end{aligned}$$

the factor 2 arising from (44) having been used twice within (46). For simplicity assume that h < x/2, so this error is

$$\leq \frac{9x^2}{2h} \max_{x \leq t \leq x+3x/2} |\mathcal{E}(t)| \leq \frac{9x^2}{2h} \tau^2(x) \,.$$

Similarly, the left hand side of (45) equals

$$\frac{1}{h}\left(\int_{1}^{x}\psi(t)\,dt - \int_{1}^{x-h}\psi(t)\,dt\right)$$

which, by (44), equals x - h/2 with error

$$\leq 2\frac{x^2}{h} \max_{x/2 \leq t \leq x} |\mathcal{E}(t)| \leq 2\frac{x^2}{h} \tau^2(x) \,.$$

The bounds above can be combined as

$$x - \frac{h}{2} - \frac{2x^2}{h}\tau^2(x) \le \psi(x) \le x + \frac{h}{2} + \frac{9x^2}{2h}\tau^2(x).$$

Choose $h(x) = x\tau(x)$ (which 'balances' the error terms) to obtain

$$x - \frac{5}{2}x\tau(x) \le \psi(x) \le x + 5x\tau(x),$$

which gives the stated result with C = 5.

End of proof of Lemma 6.35

Proof of PNT with error. From Theorem 6.34 we can choose

$$\mathcal{E}(t) = \exp\left(-c\log^{1/10}x\right)$$

in which case $\tau(x) = \exp\left(-(c/2)\log^{1/10}(x/2)\right)$ which is of the form $O\left(\exp\left(-c\log^{1/10}x\right)\right)$

where c is a constant that need not be the same at each occurrence.

Note the best error to date in the Prime Number Theorem, due to Walfisz, 1963, (and so 50 years old) is

$$\psi(x) = x + O\left(x \exp\left(-c \frac{(\log x)^{3/5}}{(\log \log x)^{1/5}}\right)\right).$$

Theorem 6.36 Prime Number Theorem with error term.

$$\pi(x) = \operatorname{li} x + O\left(x \exp\left(-c \log^{1/10} x\right)\right),$$

for some c > 0, where

$$\mathrm{li}x = \int_2^x \frac{dt}{\log t}.$$

Proof We have seen by Partial Summation that

$$\pi(x) = \frac{\theta(x)}{\log x} + \int_2^x \theta(t) \frac{dt}{t \log^2 t}$$

If $\theta(x) = x + \mathcal{E}(x)$ then

$$\pi(x) = \frac{x + \mathcal{E}(x)}{\log x} + \int_2^x (t + \mathcal{E}(t)) \frac{dt}{t \log^2 t}.$$

Using integration by parts on the main terms gives, by first integrating the $1/t \log^2 t$ factor,

$$\frac{x}{\log x} + \int_{2}^{x} t \frac{dt}{t \log^{2} t} = \frac{x}{\log x} + \left[-\frac{t}{\log t} \right]_{2}^{x} + \int_{2}^{x} \frac{dt}{\log t} = \ln x + \frac{2}{\log 2}$$

Hence

$$\pi(x) = \operatorname{li} x + \frac{2}{\log 2} + \frac{\mathcal{E}(x)}{\log x} + \int_2^x \mathcal{E}(t) \, \frac{dt}{t \log^2 t}.$$
(47)

What is $\mathcal{E}(x)$? Combining $\theta(x) = \psi(x) + O(x^{1/2})$ from the notes with Theorem 6.34 above gives

$$\mathcal{E}(x) \ll x^{1/2} + x \exp\left(-c \log^{1/10} x\right) \ll x \exp\left(-c \log^{1/10} x\right).$$

For the integral term in (47) the integral can be split at \sqrt{x} to prove

$$\int_{2}^{x} \mathcal{E}(t) \frac{dt}{t \log^{2} t} \ll x \exp\left(-c \log^{1/10} x\right),$$

though with a different c to that in Theorem 6.34.